jueves, 19 de abril de 2007

Teorías de la Luz...



Naturaleza de la luz





La luz se compone de partículas energizadas denominadas fotones, cuyo grado de energía y frecuencia determina la longitud de onda y el color. Según estudios científicos, la luz sería una corriente de paquetes fotónicos que se mueven en el campo en forma ondulatoria por un lado y en forma corpuscular por otro.








Teoría corpuscular



Newton descubre en 1666 que la luz natural, al pasar a través de un prisma es separada en una gama de colores que van desde el rojo al azul; concluye que la luz blanca o natural está compuesta por todos lo colores del arcoiris.
Isaac Newton propuso una teoría corpuscular para la luz, en contraposición a un modelo ondulatorio propuesto por Huygens. Supone que la luz está compuesta por una granizada de corpúsculos o partículas luminosas, los cuales se propagan en línea recta, que pueden atravesar medios transparentes y ser reflejados por materias opacas. Esta teoría explica la propagación rectilínea de la luz, la
refracción y la reflexión; pero no explica los anillos de Newton (irisaciones en las láminas delgadas de los vidrios), que sí lo hace la teoría de Huygens, y tampoco los fenómenos de interferencia y difracción.Demostró que la luz blanca, al traspasar un prisma, se dispersa en rayos de colores y que éstos, a su vez, al pasar por un segundo prisma no se descomponen, sino que son homogéneos.


Con su hipótesis corpuscular, intentó explicar el hermoso fenómeno de los anillos de colores engendrados por láminas delgadas (los famosos anillos de Newton) e interpretó igualmente la refracción de la luz dentro de la hipótesis corpuscular, aceptando que las partículas luminosas, al pasar de un ambiente poco denso (aire) a otro más denso (cristales), aumentan su velocidad debido a una atracción más fuerte. Esta conclusión, en nada es coincidente con la teoría ondulatoria de la luz, la que propugna una propagación más lenta de la luz en el paso a través de materiales más densos.



Teoría ondulatoria




Propugnada por Christian Huygens en el año 1678, describe y explica lo que hoy se considera como leyes de reflexión y refracción. Define a la luz como un movimiento ondulatorio semejante al que se produce con el sonido. Ahora, como los físicos de la época consideraban que todas las ondas requerían de algún medio que las transportaran en el vacío, para las ondas lumínicas se postula como medio a una materia insustancial e invisible a la cual se le llamó éter (cuestión que es tratada con mayores detalles en la separata 4.03 de este mismo capítulo).
Justamente la presencia del éter fue el principal medio cuestionador de la teoría ondulatoria. En ello, es necesario equiparar las vibraciones luminosas con las elásticas transversales de los sólidos sin que se transmitan, por lo tanto, vibraciones longitudinales. Aquí es donde se presenta la mayor contradicción en cuanto a la presencia del éter como medio de transporte de ondas, ya que se requeriría que éste reuniera alguna característica sólida pero que a su vez no opusiera resistencia al libre tránsito de los cuerpos sólidos. (Las ondas transversales sólo se propagan a través de medios sólidos.)
En aquella época, la teoría de Huygens no fue muy considerada, fundamentalmente por el prestigio que alcanzó Newton. Pasó más de un siglo para que fuera tomada en cuenta la Teoría Ondulatoria de la luz. Los experimentos del médico inglés Thomas Young sobre los fenómenos de interferencias luminosas, y los del físico francés Auguste Jean Fresnel sobre la difracción fueron decisivos para que ello ocurriera y se colocara en la tabla de estudios de los físicos sobre la luz, la propuesta realizada en el siglo XVII por Huygens.



TEORÍA ELECTROMAGNÉTICA.

Podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctrico engendra en su proximidad un campo magnético, e inversamente cada variación del campo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctrico como una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.Veinte años más tarde, Heinrich Hertz (1857-1894) comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo con ello, definitivamente, la identidad de ambos fenómenos.Hertz, en 1888, logró producir ondas por medios exclusivamente eléctricos y, a su vez, demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que las longitudes de sus ondas son manifiestamente mayores. Ello, deja en evidencia que las ondas eléctricas se dejan refractar, reflejar y polarizar, y que su velocidad de propagación es igual a la de la luz. La propuesta de Maxwell quedaba confirmada: ¡la existencia de las ondas electromagnéticas era una realidad inequívoca! Establecido lo anterior, sobre la factibilidad de transmitir oscilaciones eléctricas sin inalámbricas, se abrían las compuertas para que se produjera el desarrollo de una multiplicidad de inventivas que han jugado un rol significativo en la evolución de la naturaleza humana contemporánea.Pero las investigaciones de Maxwell y Hertz no sólo se limitaron al ámbito de las utilizaciones prácticas, sino que también trajeron con ellas importantes consecuencias teóricas. Todas las radiaciones se revelaron de la misma índole física, diferenciándose solamente en la longitud de onda en la cual se producen. Su escala comienza con las largas ondas hertzianas y, pasando por la luz visible, se llegan a la de los rayos ultravioletas, los rayos X, los radiactivos, y los rayos cósmicos.Ahora, la teoría electromagnética de Maxwell, pese a su belleza, comporta debilidades, ya que deja sin explicación fenómenos tan evidentes como la absorción o emisión; el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck en 1900, retomar la teoría corpuscular. Pero la salida al dilema que presentaban las diferentes teorías sobre la naturaleza de la luz, empezó a tomar forma en 1895 en la mente de un estudiante de dieciséis años, Albert Einstein, que en el año 1905, en un ensayo publicado en el prestigioso periódico alemán Anales de la física, abre el camino para eliminar la dicotomía que existía sobre las consideraciones que se hacían sobre la luz al introducir el principio que más tarde se haría famoso como relatividad.



Naturaleza cuántica de la luz




Sin embargo, la teoría electromagnética clásica no podía explicar la emisión de electrones por un conductor cuando incide luz sobre su superficie, fenómeno conocido como efecto fotoeléctrico.
Este efecto consiste en la emisión espontánea de
electrones (o la generación de una diferencia de potencial eléctrico) en algunos sólidos (metálicos o semiconductores) irradiados por luz. Fue descubierto y descrito experimentalmente por Heinrich Hertz en 1887 y suponía un importante desafío a la teoría electromagnética de la luz. En 1905, el joven físico Albert Einstein presentó una explicación del efecto fotoeléctrico basándose en una idea propuesta anteriormente por Planck para la emisión espontánea de radiación lumínica por cuerpos cálidos y postuló que la energía de un haz luminoso se hallaba concentrada en pequeños paquetes, que denominó cuantos de energía y que en el caso de la luz se denominan fotones. El mecanismo del efecto fotoeléctrico consistiría en la transferencia de energía de un fotón a un electrón. Cada fotón tiene una energía proporcional a la frecuencia de vibración del campo electromagnético que lo conforma. Posteriormente, los experimentos de Millikan demostraron que la energía cinética de los fotoelectrones coincidía exactamente con la dada por la fórmula de Einstein.
El punto de vista actual es aceptar el hecho de que la luz posee una
doble naturaleza que explica de forma diferente los fenómenos de la propagación de la luz (naturaleza ondulatoria) y de la interacción de la luz y la materia (naturaleza corpuscular). Esta dualidad onda/partícula, postulada inicialmente para la luz, se aplica en la actualidad de manera generalizada para todas las partículas materiales y constituye uno de los principios básicos de la mecánica cuántica.






martes, 17 de abril de 2007



Hola compañeros!!!

Pues nadamás para agredecerles a quíenes me hicieron comentarios y muchas gracias, espero y nos frecuentemos más usando las tecnologías!!

Nos estamos viendo OK??? adiosito!!

martes, 10 de abril de 2007

LA TERMODINAMICA

Como todos sabemos, la termodinámica es la parte de la física que se encarga de estudiar lo relacionado con la energía, dentro de ella
existen sus clasificaciones también, las cuales se muestran a continuación:

Ley cero de la Termodinámica:

Si un cuerpo A está en equilibrio térmico con un cuerpo C y un cuerpo B también está en equilibrio térmico con el cuerpo C, entonces los cuerpos A y B están en equilibrio térmico. Esta curiosa nomenclatura se debe a que los científicos se dieron cuenta tardíamente de la necesidad de postular lo que hoy se conoce como la ley cero: si un sistema está en equilibrio con otros dos, estos últimos, a su vez, también están en equilibrio. Cuando los sistemas pueden intercambiar calor, la ley cero postula que la temperatura es una variable de estado, y que la condición para que dos sistemas estén en equilibrio térmico es que se hallen a igual temperatura.

Enunciados de la segunda ley de la termodinámica:
El primero es enunciado por Clausius y dice así:
No es posible para una máquina cíclica llevar continuamente calor de un cuerpo a otro que esté a temperatura más alta, sin que al mismo tiempo se produzca otro efecto (de compensación).
El segundo enunciado echo por Kelvin y Planck dice:
Es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura.

Muerte térmica del universo:
El caso de muerte térmica del universo, se produciría en un hipotético caso de que este continuara expandiéndose indefinidamente. El big crunch es un fenomeno completamente gravitatorio y si hubiera big crunch no daría tiempo a que el universo se enfriara térmicamente. Una advertencia, el universo solo se enfría por que se expande, no tiene nada a lo que ceder calor, puesto que el universo en si es un sistema adiabaticamente aislado, por ello, sólo un universo abierto ( en expansión por siempre) sufriría la muerte térmica. Un universo con big crunch, cuando comenzara a contraerse, comenzaría a calentarse. En cuanto la universalidad de la 2ª ley de la tdca os diré que es una de las leyes mas fiables de todas las que hay en la física.




La muerte térmica se refiere a todas las partículas cósmicas que abundan en el universo y que según científicos algún día no muy lejano se destruirá,
Esto no es más que el que la temperatura del planeta conforme ha ido aumentando y pues provoca que las partículas aumenten su movimiento


Proceso adiabático y no adiabático:

Proceso adiabático: Es aquel en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico.


Energía interna de un sistema:

Es el resultado de la energía cinética de las moléculas o átomos que lo constituyen, de sus energías de rotación y vibración, además de la energía potencial intermolecular debida a las fuerzas de tipo gravitatorio, electromagnético y nuclear, que constituyen conjuntamente las interacciones fundamentales. Al aumentar la temperatura de un sistema, sin que varíe nada más, aumenta su energía interna.



3 fuentes de energía termodinámica:

Energía solar: Energía obtenida directamente del Sol. La radiación solar incidente en la Tierra puede aprovecharse por su capacidad para calentar o directamente a través del aprovechamiento de la radiación en dispositivos ópticos o de otro tipo. Es un tipo de energía renovable y limpia, lo que se conoce como energía verde.

Tiene la ventaja de que no es costosa y no contamina.

Energía nuclear: Es aquella que resulta del aprovechamiento de la capacidad que tienen algunos isótopos de ciertos elementos químicos para experimentar reacciones nucleares y emitir energía en la transformación.

La ventaja es que se puede convertir en calor


Energía potencial: En la energía potencial puede considerarse también la energía potencial elástica, aunque esto suele aplicarse en el estudio de problemas de ingeniería y no de física. Expresa la capacidad que poseen los cuerpos con masa de efectuar un trabajo.

Su ventaja es que se aplica a la ingeniería.


Bibliografía:

http://es.wikipedia.org/wiki/Energía_mecánica

www.geocites.com/librosmaravillosos/tecnica/perpetuum/cap04_01.html

http://www.wikipwedia.com/