miércoles, 23 de mayo de 2007

__________Ley de LENZ______________

Ley de Lenz
Los estudios sobre inducción electromagnética, realizados por Michael Faraday nos indican que en un conductor que se mueva cortando las líneas de fuerza de un campo magnético se produciría una fuerza electromotríz (FEM) inducida y si se tratase de un circuito cerrado se produciría una corriente inducida. Lo mismo sucedería si el flujo magnético que atraviesa al conductor es variable.
La Ley de Lenz nos dice que las fuerzas electromotrices o las corrientes inducidas serán de un sentido tal que se opongan a la variación del flujo magnético que las produjeron. Esta ley es una consecuencia del principio de conservación de la energía.
La polaridad de una FEM inducida es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.
El flujo de un campo magnético uniforme a través de un circuito plano viene dado por:
donde:
B = Intensidad de campo magnéticoS = Superficie del conductorα = Ángulo que forman el conductor y la dirección del campo.
Si el conductor está en movimiento el valor del flujo será:
En este caso la
Ley de Faraday afirma que la FEM inducida en cada instante tiene por valor:
El signo (-) de la expresión anterior indica que la FEM inducida se opone a la variación del flujo que la produce. Este signo corresponde a la ley de Lenz.
Esta ley se llama así en honor del físico germano-báltico
Heinrich Lenz, quien la formuló en el año 1834.
Obtenido de "
http://es.wikipedia.org/wiki/Ley_de_Lenz"


Lenz estudió química y física en la
Universidad de Tartu. Viajó con Otto von Kotzebue en su tercera expedición alrededor del mundo desde 1823 a 1826. Durante el viaje Lenz estudió las condiciones climáticas y las propiedades físicas de la agua del mar.

Comenzó a trabajar en la
Universidad de San Petersburgo, donde posteriormente sirvió como Decano de Matemática y Física desde 1840 a 1863. Comenzó a estudiar el electromagnetismo en 1831. Además de la ley nombrada en su honor, Lenz también descubrió independientemente la Ley de Joule en 1842; para hacer honor a sus esfuerzos en el problema, los físicos rusos siempre usan el nombre "Ley de Joule-Lenz".
Obtenido de "
http://es.wikipedia.org/wiki/Heinrich_Lenz"


Ley de Lenz


"Cuando varía el flujo magnético que atraviesa una bobina, esta reacciona de tal manera que se opone a la causa que produjo la variación"
Es decir, si el flujo aumenta, la bobina lo disminuirá; si disminuye lo aumentará. Para conseguir estos efectos, tendrá que generar corrientes que, a su vez, creen flujo que se oponga a la variación. Se dice que en la bobina ha aparecido una CORRIENTE INDUCIDA, y, por lo tanto, UNA FUERZA ELECTROMOTRIZ INDUCIDA.
Se verá un ejemplo aclaratorio: Supongamos que la bobina, situada a la izquierda en la figura siguiente, tiene un flujo nulo.Por lo que la corriente I será nula también.
Si le acercamos un imán, parte del flujo de éste atravesará la propia bobina, por lo que el flujo de la bobina pasará de ser nulo a tener un valor.
La bonina reaccionará intentando anular este aumento de flujo
Tomado de: http://www.ifent.org/lecciones/cap07/cap07-08.asp

miércoles, 2 de mayo de 2007

Refracción. definición

La refracción es el fenómeno que se presenta en un rayo sonoro o luminoso cuando incide oblicuamente sobre la superficie de separación de dos medios, y en virtud del cual el rayo cambia de dirección y velocidad.Cuando un rayo luminoso incide sobre la superficie que separa dos medios, por ejemplo el aire y el agua, parte de la luz incidente se refleja, mientras que la otra parte se refracta y penetra en el segundo medio. Aunque el fenómeno de la refracción se aplica fundamentalmente a las ondas luminosas los conceptos son aplicables a cualquier onda incluyendo las ondas electromagnéticas.Se cumplen entonces las leyes deducidas por Huygens que rigen todo el movimiento ondulatorio:- El rayo incidente, el reflejado y el refractado se encuentran en el mismo plano.- Los ángulos de incidencia y reflexión son iguales, entendiendo por tales los que forman respectivamente el rayo incidente y el reflejado con la perpendicular a la superficie de separación trazada en el punto de incidencia.La velocidad de la luz depende del medio que atraviese, por lo que es más lenta cuanto más denso sea el material y viceversa. Por ello, cuando la luz pasa de un medio menos denso (aire) a otro más denso (cristal), el rayo de luz es refractado acercándose a la normal y por tanto, el ángulo de refracción será más pequeño que el ángulo de incidencia. Del mismo modo, si el rayo de luz pasa de un medio más denso a uno menos denso, será refractado alejándose de la normal y, por tanto, el ángulo de incidencia será menor que el de refracción.



Leyes de la refracción

Ley de Snell de la refracción
Consideremos un frente de ondas que se acerca a la superficie de separación de dos medios de distintas propiedades. Si en el primer medio la velocidad de propagación de las ondas es v1 y en el segundo medio es v2 vamos a determinar, aplicando el principio de Huygens, la forma del frente de onda un tiempo posterior t.
A la izquierda, se ha dibujado el frente de ondas que se refracta en la superficie de separación de dos medio, cuando el frente de ondas incidente entra en contacto con el segundo medio. Las fuentes de ondas secundarias situadas en el frente de ondas incidente, producen ondas que se propagan en todas las direcciones con velocidad v1 en el primer medio y con velocidad v2 en el segundo medio. La envolvente de las circunferencias trazadas nos da la forma del frente de ondas después de tiempo t, una línea quebrada formada por la parte del frente de ondas que se propaga en el primer medio y el frente de ondas refractado que se propaga en el segundo.
El frente de ondas incidente forma un ángulo θ1 con la superficie de separación, y frente de ondas refractado forma un ángulo θ2 con dicha superficie.
En la parte central de la figura, establecemos la relación entre estos dos ángulos.
En el triángulo rectángulo OPP’ tenemos que
v1·t=OP’·senθ1
En el triángulo rectángulo OO’P’ tenemos que
v2·t=OP’·senθ2
La relación entre los ángulos θ1 y θ2 es

Es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio.


ÁNGULO DE INCIDENCIA Y ÁNGULO DE REFRACCIÓN
Se llama ángulo de incidencia -i- el formado por el rayo incidente y la normal. La normal es una recta imaginaria perpendicular a la superficie de separación de los dos medios en el punto de contacto del rayo.
El ángulo de refracción -r'- es el formado por el rayo refractado y la normal.
ÍNDICE DE REFRACCIÓN
Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c", y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.
Se puede establecer una relación entre los índices de los dos medios n2 y n1. En el applet de esta práctica se manejan estas relaciones:
Substancias
Aire
Agua
Plexiglás
Diamante
Índices de refracción
1.00029
1.333
1.51
2.417

material
aire
vapor de agua
agua dulce
agua de mar
aluminio
Velocidad del sonido (m/s)
331
401
1493
1513
5104


REFRACCIÓN: LEYES

Un rayo se refracta (cambia de dirección) cuando pasa de un medio a otro en el que viaja con distinta velocidad. En la refracción se cumplen las siguientes leyes:
1.- El rayo incidente, el rayo refractado y la normal están en un mismo plano.
2.- Se cumple la ley de Snell:
y teniendo en cuenta los valores de los índices de refracción resulta:
n1sen i = n2 sen r.
Cuando la luz se refracta cambia de dirección porque se propaga con distinta velocidad en el nuevo medio. Como la frecuencia de la vibración no varía al pasar de un medio a otro, lo que cambia es la longitud de onda de la luz como consecuencia del cambio de velocidad.
La onda al refractarse cambia su longitud de onda:
e = v·t
que equivale a l = v ·T = v / n
Un rayo incidente cambia más o menos de dirección según el ángulo con que incide y según la relación de los índices de refracción de los medios.

Si n2 es mayor que n1, como en el caso de la luz cuando pasa desde el aire (n 1) al vidrio o al agua (n2 ), el rayo refractado se curva y se acerca a la normal tal como muestra la figura de inicio de esta página.
En el caso contrario, es decir, si el rayo de luz pasa del medio 2 (agua) al medio 1 (aire) se aleja de la normal.
Cuando el rayo de luz pasa de un medio más lento a otro más rápido se aleja de la normal.


A un determinado ángulo de incidencia le corresponde un ángulo de refracción de 90º y el rayo refractado saldrá "rasante" con la superficie de separación de ambos medios.
Este ángulo de incidencia se llama ángulo límite o ángulo crítico.

Para ángulos de incidencia mayores que él, el ángulo de refracción será mayor de 90º y el rayo no será refractado, ya que no pasa de un medio a otro: se produce una reflexión total interna.
Al incidir un rayo sobre una superficie transparente parte de él se refleja.
SIEMPRE QUE SE PRODUCE REFRACCIÓN TAMBIÉN SE PRODUCE REFLEXIÓN
Una parte del rayo incidente se refleja y la otra se refracta. Cuando un rayo se refleja sin penetrar en el otro medio, parte de él es absorbido por la interacción con los átomos.
Siempre que la radiación atraviesa un medio, una parte de ella es absorbida por el medio (no se transmite toda).

Practica con esta aplicación
En la fibra óptica la luz se propaga por reflexión total interna. En las múltiples reflexiones siempre supera el ángulo límite y el rayo se mantiene dentro de la fibra. Pulsa en este enlace para ver una animación.

http://www.sc.ehu.es/sbweb/fisica/ondas/snell/snell.htm#Ley%20de%20Snell%20de%20la%20refracción

www.astromia.com/glosario/refraccion.htm

http://teleformacion.edu.aytolacoruna.es/FISICA/document/fisicaInteractiva/OptGeometrica/reflex_Refrac/Refraccion.htm